对头部磁共振成像(MRI)检查的需求不断增长,以及全球放射科医生的短缺,导致在全球报告头部MRI扫描所花费的时间增加。对于许多神经系统疾病,这种延迟会导致发病率和死亡率增加。一种自动分解工具可以通过在成像时识别异常并确定这些扫描的报告优先级来减少异常检查的报告时间。在这项工作中,我们提出了一个卷积神经网络,用于检测$ \ text {t} _2 $加权的头部MRI扫描中临床上相关的异常。使用经过验证的神经放射学报告分类器,我们从两家英国两家大型医院进行了43,754张标记的数据集,以进行模型培训,并在800张测试集上证明了准确的分类(AUC下的区域(AUC)= 0.943),由800张扫描集进行了标签。神经放射学家团队。重要的是,当仅在一家医院接受扫描培训时,模型从另一家医院进行了扫描($ \ delta $ auc $ \ leq $ 0.02)。一项模拟研究表明,我们的模型将使异常检查的平均报告时间从28天到14天,并从两家医院的9天到5天,这表明在临床分类环境中使用了可行性。
translated by 谷歌翻译
噪音和不确定性通常是机器学习的敌人,训练数据中的噪声会导致预测中的不确定性和不准确性。但是,我们开发了一种机器学习体系结构,该体系结构从噪声本身中提取重要信息以改善预测。现象学计算,然后在一个目标变量中利用不确定性来预测第二个目标变量。我们将这种形式主义应用于pbzr $ _ {0.7} $ sn $ _ {0.3} $ o $ $ _ {3} $ crystal,使用介电常数的不确定性来推断热容量,并正确预测了相位过渡,否则无法扣除。在第二个示例中 - 液滴的单粒子衍射 - 我们利用粒子计数及其不确定性来推断地面真相衍射幅度,比仅利用粒子计数时提供更好的预测。我们的通用形式主义使机器学习中的不确定性剥削,在物理科学及其他地区具有广泛的应用。
translated by 谷歌翻译
图形神经网络(GNN)的输入图的大小不断增加,突显了使用多GPU平台的需求。但是,由于计算不平衡和效率较低的通信,现有的多GPU GNN解决方案遭受了劣质性能。为此,我们提出了MGG,这是一种新型的系统设计,可以通过以GPU为中心的软件管道在多GPU平台上加速GNN。 MGG探讨了通过细粒度计算通信管道中隐藏GNN工作负载中远程内存访问延迟的潜力。具体而言,MGG引入了管​​道感知工作负载管理策略和混合数据布局设计,以促进通信局限性重叠。 MGG实现以优化的管道为中心的内核。它包括工作负载交织和基于经经的映射,以进行有效的GPU内核操作管道和专门的内存设计以及优化,以更好地数据访问性能。此外,MGG还结合了轻巧的分析建模和优化启发式方法,以动态提高运行时不同设置的GNN执行性能。全面的实验表明,MGG在各种GNN设置上的最先进的多GPU系统要比最先进的多GPU系统:平均比具有统一虚拟内存设计的多GPU系统快3.65倍,平均比DGCL框架快7.38倍。
translated by 谷歌翻译
掌握进行手术所需的技术技能是一项极具挑战性的任务。基于视频的评估使外科医生可以收到有关其技术技能的反馈,以促进学习和发展。目前,此反馈主要来自手动视频评论,该视频审查是耗时的,限制了在许多情况下跟踪外科医生进展的可行性。在这项工作中,我们引入了一种基于运动的方法,以自动评估手术病例视频饲料的手术技能。拟议的管道首先可靠地轨道轨迹,以创建运动轨迹,然后使用这些轨迹来预测外科医生的技术技能水平。跟踪算法采用了一个简单而有效的重新识别模块,与其他最新方法相比,它可以改善ID-开关。这对于创建可靠的工具轨迹至关重要,当仪器定期在屏幕上和屏幕外移动或定期遮盖。基于运动的分类模型采用最先进的自我发明变压器网络来捕获对技能评估至关重要的短期和长期运动模式。在体内(Cholec80)数据集上评估了所提出的方法,其中专家评级的目标技能评估对Calot三角解剖的评估被用作定量技能度量。我们将基于变压器的技能评估与传统的机器学习方法进行比较,并使用拟议的和最新的跟踪方法进行比较。我们的结果表明,使用可靠跟踪方法的运动轨迹对仅根据视频流进行评估的外科医生技能是有益的。
translated by 谷歌翻译
在本文中,我们探索了一个改进的框架,以训练单腔神经增强模型,以识别强大的语音识别。设计的训练框架扩展了现有的混合训练标准,以利用未配对的干净语音和真实的嘈杂数据。发现未配对的干净言语对于提高实际嘈杂言论的分离语音质量至关重要。所提出的方法还对处理和未加工的信号进行混合,以减轻处理工件。单渠道Chime-3真实测试集上的实验表明,在语音识别性能方面,对在不匹配的模拟数据上训练的增强系统的语音识别性能以有监督的方式或以不受欢迎的方式对匹配的真实数据进行了显着改善。与未经处理的信号相比,使用端到端和混合声模型在未经扭曲的数据进行重新纠正的情况下,该系统已实现了16%至39%的相对减少。
translated by 谷歌翻译
我们研究Livingstone&Zanella(2021)中引入的一阶级本地平衡的大都市 - 黑斯廷斯算法(2021)。要在类中选择特定算法,用户必须选择平衡函数$ g:\ mathbb {r} \ to \ mathbb {r} $满足$ g(t)= tg(1 / t)$,以及噪声分布提案增量。课程中的流行选择是Metropolis调整的Langevin算法,最近推出的Barker提案。我们首先建立一个普遍限制的最佳验收率为57%,并为N $ N $的缩放,因为维度在$ G $的温和平滑假设下的所有成员之间的无限程度倾向于无限算法的目标分布是产品形式。特别地,我们通过预期的平方跳跃距离来获得类中任意算法的渐近效率的显式表达式。然后,我们考虑如何在各种约束下优化此表达式。我们为Barker提案提供了最佳的噪声分布选择,在高斯噪声分布​​下的平衡功能的最佳选择,以及整个类中的一阶本地平衡算法的最佳选择,结果取决于特定的目标分布。数值模拟确认了我们的理论发现,特别表明,Barker提案中的双模噪声分布选择产生了比原始高斯版本始终如一的效率的实用算法。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
机器学习(ML)方法已被证明是物理科学中非常成功的工具,特别是在应用于实验数据分析时。人工智能特别擅长在高维数据中识别模式,通常优于人类。在这里,我们应用了一个名为主成分分析(PCA)的简单ML工具,以研究来自μON光谱的数据。来自该实验的测量数量是不对称功能,其具有关于样品的平均内在磁场的信息。不对称功能的变化可能表示相变;然而,这些变化可能非常微妙,并且现有的分析方法需要了解材料的特定物理。 PCA是一个无人驾驶的ML工具,这意味着不需要对输入数据的假设,但我们发现它仍然可以成功应用于不对称曲线,并且可以恢复相位转换的指示。将该方法应用于具有不同底层物理的一系列磁性材料。我们发现,同时对所有这些材料进行PCA可以对相变指示器的清晰度产生积极影响,并且还可以改善不对称功能最重要变化的检测。对于这个联合PCA,我们介绍了一种简单的方法来跟踪不同材料的贡献以获得更有意义的分析。
translated by 谷歌翻译
在商业风能发电中,风力涡轮机叶片的监测和预测维护原位是一个重要任务,其通过来自无人驾驶飞行器(UAV)的空中调查的远程监测是常见的。随着时间的推移,涡轮机叶片易于运行和基于天气的损伤,降低涡轮机的能效输出。在这项研究中,我们解决了刀片检测和提取的其他耗时的任务,以及无人机捕获的涡轮叶片检查图像中的故障检测。我们提出了Bladenet,一种基于应用的强大的双架,以执行无监督的涡轮叶片检测和提取,然后使用简单的线性迭代聚类(SLIC)方法来产生区域集群。然后通过一套半监督检测方法处理这些簇。我们的双架架构检测玻璃纤维复合材料刀片的表面故障,高才能,同时需要最小的现有手动图像注释。 Bladenet在我们的{\ O} RSTED刀片检查数据集中为海上风力涡轮机进行了0.995的平均精度(AP),以及丹麦技术大学(DTU)Nordtank涡轮刀片检测数据集的0.223。 Bladenet还在{\ o} rsted刀片检查数据集中获得了表面异常检测的0.639的AUC。
translated by 谷歌翻译